汽车网络安全的未来硬件需求


目录

1.概述

2.EVITA 

    2.1 EVITA HSM

    2.2 EVITA保护范围 

3.市场变化对车载网络安全的影响

    3.1 非侵入式攻击的风险

    3.2 量子计算机的蛮力攻击

    3.3 整车E/E架构的变化

    3.4 网络安全标准和认证

    3.5 汽车工业的网络安全措施

4.汽车安全控制器

    4.1 TPM2.0 

    4.2 安全控制器的硬件保护措施

5. EVITA HSM和安全控制器结合

6.小结



文章翻译自《Future requirements for automotive hardware security
1.概述
智能网联汽车依赖于各种不同的技术来提高驾驶员的舒适度、道路安全和移动服务。但由于其与外部世界的互连和易于访问,智能网联汽车会受到网络世界中的恶意软件操纵和硬件级别的物理攻击。这导致需要基于硬件的安全措施来抵御通过无线接口的间接攻击和直接物理攻击。本文讨论了基于硬件的安全在日益增长的车辆自动化、互联性背景下的作用,以及由此产生的对车辆安全的需求。
基于EVTA 2011和当前汽车网络攻击现状,本文主要讨论以下市场变化:
  • 简单、非侵入式攻击的威胁;
  • 未来量子计算机攻击的潜在威胁;
  • 未来E/E架构的变化;
  • 网络安全在标准、监管、认证方面的举措;
  • 当前和未来车载网络中的安全用例
结合EVITA HSM和TPM2.0笔者提出了汽车分布式网络安全概念(纵深防御体系),在介绍该体系前,笔者介绍了汽车安全控制器的基本特征,从而证明了分布式网络安全概念的有效性。

2.EVITA 

2.1 EVITA HSM

EVITA(E-safety vehicle intrusion protected applications)是一个欧洲资助项目(2008年7月至2011年12月)。其目标是为汽车车载网络设计、验证和原型化一种架构,在这种架构中,安全相关组件可以免受篡改,敏感数据可以免受泄露。
该网络安全体系架构的核心需求有三个:
  • 分布式安全:所有电子元件和相关连接必须得到充分保护,因为整个系统的安全性取决于最薄弱的环节,也即短板效应;
  • 实时通信能力:车内、车外的通信,如V2X、SecOC;
  • 经济性:针对汽车行业的特定需求量身定制的解决方案,未使用的硬件功能必须省略
针对上述需求,可以从三个方面进行优化:
  • 为MCU、传感器或执行器集成HSM(Hardware Security Module)
  • 软硬件网络安全措施结合
  • 基于经济考量的网络安全方案:保证攻击者成功攻击后的成本必须高于该方案的潜在经济效应
基于上述需求和经济考量,EVITA定义了三种不同变体的HSM,它们在计算能力、现有网络安全范畴和部署场景有着明显的区别,这三种HSM分别为:
  • EVITA Full HSM:保护汽车与外部通信(V2X)
汽车网络安全的未来硬件需求
  • EVITA Medium HSM:保护控制器和车内通信
汽车网络安全的未来硬件需求
  • EVITA Light HSM:保护ECU、传感器、执行器之间的交互 
汽车网络安全的未来硬件需求

2.2 EVITA保护范围 

对于汽车的网络攻击手段,主动、被动和物理攻击是有明显区别:
  • 主动攻击,目的在于改变系统行为;
  • 被动攻击,目的在于访问敏感信息;
  • 物理攻击,目的在于直接访问目标硬件系统,因此也可以分为侵入式和非侵入式攻击
由于车辆严苛的运行环境、功能安全和商业考虑,硬件保护措施会受到一定限制,因此需要定义一种包含软件、硬件组件构成的新的安全架构。
例如ECU或者功能上的可信度由防篡改软件实现,而防篡改本身就需要所谓的“信任根”,该信任根把安全相关功能锚定在可信任的、受保护的硬件中里,于是就出现了基于硬件的信任锚。
信任锚结合合理的软件可以充分发挥优势,以保护敏感信息、数据的安全。 
而EVITA的保护范围主要涉及由于软件漏洞遭受的主动或者被动攻击。为此该项目提出通过严格遵守编码标准来监控软件质量;通过代码审计和渗透测试来减小软件潜在攻击路径;通过密钥保护来防止调试接口的攻击;通过SecOC来保护CAN通信的数据完整性。
但是,随着时间的推移,网络攻击手段日益丰富,因此有必要在此基础上新增未来的网络安全需求。


3.市场变化对车载网络安全的影响

自2011年EVITA签订以来,汽车市场发生了比较大的变化。网络攻击手段也出现了新的变化。

3.1 非侵入式攻击的风险

由于汽车软件代码量的剧增,汽车MCU成为了重点关注对象。除了上述提到的调试接口攻击之外,还有对PCB和ECU板级的非侵入式攻击(如温度、电压等)以及侧信道攻击。
此类攻击方式可以有效针对同一种车型,因此存在着被大规模攻击的可能。
针对此类攻击,常见的防御错误有使用额外代码来保护加密操作,使用会话密钥来保护数据完整性,芯片添加硬件功能,例如电压、时钟温度监控等等。
随着网络安全的发展,汽车安全控制器(Automotive Security Controllers)逐渐进入车企视野,它有额外的硬件保护机制以防止故障注入和侧信道攻击,因此可用于加固整车E/E架构。

3.2 量子计算机的蛮力攻击

量子计算机有可能对非对称算法产生显著的影响。非对称算法,例如RSA、椭圆曲线密码学(ECC)和DSA等,依赖于数学上的复杂问题,如大整数的因数分解或离散对数问题。这些问题在经典计算机上计算非常困难,提供了良好的安全性。
然而,量子计算机的出现可能改变这一情况。著名的Shor算法能够在量子计算机上以多项式时间复杂度因数分解大整数,并解决离散对数问题。这意味着一旦量子计算机具备足够的规模和稳定性,它们将能够快速破解目前基于这些问题的非对称加密算法。
因此后量子密码的标准会逐步出现。

3.3 整车E/E架构的变化

为了降低E/E架构的复杂性,引入了域控的概念,如下图: 
汽车网络安全的未来硬件需求
通过在高性能芯片里集成复杂功能,跨域融合的通信路由是该架构的目标。
在未来十年,为了实现软件更新、多媒体流和用于自动驾驶的高清卡的实时更新,有以太网> 25Gb/s的数据速率的需求。
关于内部通信,必须假设将来每条消息都将在CAN和以太网中自由地传输。
因此必须把以太网保护机制(MACSec、IPSec、TLS)提上日程。

3.4 网络安全标准和认证

随着汽车网络安全法规的不断完善,2022年7月,联合国欧洲经济委员会(UNECE)正式推出了首部汽车网络安全法规R155和汽车软件升级法规。这些法规要求,在欧盟上市的车型必须取得特定车型型式认证(VTA),而在此之前,车企必须满足满足网络安全管理体系(CSMS)的要求,并取得相应的认证。
2026年1月1日,中国拟实施《汽车整车信息安全技术要求》,其中最重要的一环是建立起企业内部的网络安全管理体系(Cyber Security Management System),需要从信息安全治理、开发管理、生产管理、供应商管理以及风险管理等方面进行管理。

3.5 汽车工业的网络安全措施

博世认为,必须将各种安全概念和机制结合起来,才能有效地实施所谓的纵深防御体系。
例如,加密灵活性,即更新密钥、调整密钥长度和使用的加密算法的能力,是保持能够在动态市场环境中行动的必要先决条件,并且在加密方面具有相对较长的车辆生命周期;需要一个TPM或硬件信任锚来安全地存储生成签名的密钥;引入汽车安全控制来加固纵深防御体系。

4.汽车安全控制器

汽车安全控制器是用于汽车工业安全关键应用的微控制器。 
他们的保护水平远远高于EVITA HSM。今天的典型应用是移动通信,V2X、SOTA、汽车共享、车辆访问、中央钥匙管理、固定器、黑匣子和OBDII数据记录等等,常见的汽车安全控制器如下:
汽车网络安全的未来硬件需求

4.1 TPM2.0 

TPM2.0是由TCG发布的国际开发标准。基于该标准的安全控制器多年来一直被用作IT行业的加密协处理器。
OPTIGATM TPM SLI9670 是符合TPM 2.0标准的汽车安全控制器,通过AEC-Q100和EAL4+认证.
汽车网络安全的未来硬件需求
除了硬件之外,该认证还包括完整的固件(近100个软件加密功能);目前用于TBOX、IVI或中央网关。
为了便于TPM 2.0的集成和应用,制定了TPM软件栈(TSS)标准,TSS作为主机执行命令和管理密钥的中间件软件。
TSS提供了不同级别的api,以促进与Linux和其他嵌入式平台的集成,主要包含三个方向:
  • 密钥管理
  • 资源管理
  • 多应用同时访问
TSS堆栈是由英飞凌与其他知名合作伙伴(如Fraunhofer)共同维护的开源项目,已经可以在GitHub和各种Linux发行版中使用。 

4.2 安全控制器的硬件保护措施

针对安全控制器的攻击手段常见如下:
  • 侧信道攻击:SPA、DPA、EMA
  • 间接故障感应绕过由干扰脉冲、干扰场、辐照或感应引起的保护机制
 针对上述攻击,安全控制器通常允许在发生攻击时进行主动反击,例如应用程序终止或删除关键内存内容:
  • 为了防止内存被窃听或读取软件或数据,通常对安全控制器的内存内容进行加密
  • 为了保护内存和CPU之间的数据路径,在硬件上实现了纠错码,以检测和纠正单个和多个比特的错误。
  • 通过代码和数据签名保护CPU免受攻击
  • 主动护盾用于保护深层芯片结构免受攻击

5. EVITA HSM和安全控制器结合

目前,经过认证的汽车安全控制器也越来越多地在车辆架构中补充基于EVITA hsm的硬件解决方案。此外,它们通过物理攻击提供额外的保护,防止未经授权的访问,从而加固整个E/E体系架构。
不过,OEM、Tier1在设计网络安全架构时需要考虑经济性和自身特定需求。
以整车SOTA为例,我们来看如何将EVITA HSM和TPM 2.0有机结合。
汽车网络安全的未来硬件需求
目前,SOTA更新主要用于IVI和TBOX的软件,而ADAS、底盘或动力系统更新通常通过车载OBD进行。然而,在未来几年,这些ecu也将通过云服务器和作为OTA Master的中央网关进行更新。
中央网关负责控制和监控每个ECU允许的固件版本,从OEM OTA云服务器下载最新固件,解密、认证和检查接收到的固件,解包并将接收到的服务包拆分到各个ECU,建立到这些ECU的安全传输通道,更新和重置软件映像,并提示IVI向驱动程序显示更新详细信息。因此,中央网关必须防止各个ecu(包括OTA管理器)的固件未经授权就被更改。
可以看到,上述示例使用了英飞凌Tricore系列,包含内置HSM,但由于芯片的保护力度不够,添加了TPM作为补充。
在此应用场景(SOTA)中,使用与TPM的SSL/TLS通信来保护云端与车辆之间的数据交换。SSL/TLS握手检查软件是否在正确的车辆上更新。如果SSL/TLS通信已成功建立,则软件更新映像可以通过受保护的SSL/TLS通道传输到车辆。因此,TPM形成了分布式安全概念的中心信任锚,并充当与车辆通信的可信端点。
一旦中央网关下载了固件,它就会将其分发到相应的ecu,它们之间使用SecOC进一步保护数据完整。


6.小结

由于E/E架构的变化,加密性能要求也逐步提升。此外,对未来可能发生的攻击情景的潜在威胁以及所需的额外保护范围进行现实的评估当然也很重要。笔者认为基于汽车微控制器与集成硬件安全模块相结合的系统解决方案是ECU级别的基本保护,以及关键通信接口和网络中的一些额外的汽车安全控制器(如中央网关,远程信息处理,电动汽车的车载充电器或域控制器),这是最经济的方法,可以在未来领先于可能的攻击者一步。




往期回顾:

1.汽车标定精选

汽车标定技术–标定概念详解
汽车标定技术–Bypass的前世今生
万字长文:汽车标定技术–XCP概述

2.AUTOSAR精选

AUTOSAR CryptoStack–CSM Job夹带了哪些私货
AUTOSAR 诊断栈分析(一)
AUTOSAR OS概述(一)

3.汽车网络安全精选

汽车信息安全–MCU启动常用密码算法
汽车网络安全方案需求分析
汽车信息安全–常见车规MCU安全启动方案
车载信息安全场景概述

4.汽车功能安全精选


5.汽车虚拟化精选

    汽车ECU虚拟化技术初探(一)

    汽车ECU虚拟化技术(二)–U2A虚拟化功能

6.杂七杂八

    Flash模拟EEPROM原理浅析

    征途漫漫:汽车MCU的国产替代往事

    车规MCU应用场景及国产替代进展


原文始发于微信公众号(汽车MCU软件设计):汽车网络安全的未来硬件需求

版权声明:admin 发表于 2024年4月13日 上午7:01。
转载请注明:汽车网络安全的未来硬件需求 | CTF导航

相关文章