Starlink天基卫星星座轨道壳详解

IoT 11个月前 admin
415 0 0
Starlink天基卫星星座轨道壳详解
高度范围从地球表面上方 300 公里到大约 1,400 公里的轨道被定义为低地球轨道,并且整合到这些轨道上的卫星被称为 LEO 卫星。较低的高度范围受地球大气层的限制,更准确地说是受地球大气层以上几乎没有空气的高度限制,因此避免了卫星的减速和拖曳
Starlink天基卫星星座轨道壳详解
LEO 卫星相对于地球上的地面站以大约 7.5 公里/秒的速度移动。卫星的轨道周期在 90-110 分钟范围内。卫星与地面站之间的通信持续时间为 5-15 分钟,一天中有 6-8 次
Starlink星座计划由数千颗小型 LEO 卫星组成,部署在三个外壳(层)中,致力于最大限度地提供面向全球地球覆盖的宽带互联网服务,并与地面站(收发器)结合,组成一颗卫星- 地面综合网络。
到 2020 年 10 月 24 日,SpaceX 确认有 893 颗卫星被安置在低轨道太空中。总共计划在三个轨道壳中部署和组织近 12,000 颗卫星,如下所示(Starlink,2020 年;Starlink 卫星任务,2020 年)。

​第一层外壳:550 公里高度的 1,440 颗卫星。

第二层外壳:1,110 公里高度的2,825 颗卫星。

第三层外壳:340 公里高度的7,500  颗卫星。

首批 1,440 颗卫星将由 72 个轨道面组成,每个轨道面有 20 颗卫星,计划到 2024 年完成其他轨道面以提供实时宽带服务。

对于作为专用于全球宽带服务的卫星-地面网络的一部分的LEO卫星星座,从地面观测来看,应实施两类地面站点。

第一类是用户站(用户接入点),带有适当的碟形天线和收发器,用于锁定/解锁与卫星的通信。最初,用户将在 40° 的用户仰角下与卫星通信,但这可能会发生变化。Starlink已向 FCC(联邦通信委员会)提交请求,要求将用户的仰角降低 25° 而不是 40°,以改善接收效果。

第二类是地面站与卫星的运行、控制和维护有关。SpaceX 已向 FCC 申请在美国建立至少 32 个地面站,截至 2020 年 7 月 30 日已批准其中六个(在六个州)。出于这种奉献精神,卫星与三个测试地面站进行通信,以进行持续时间少于 10 分钟的短期实验,每天进行几次。专用于控制和操作的地面站通常与仰角为 10° 的卫星通信。

Starlink半径、速度、轨道周期和每日通过次数

Starlink天基卫星星座轨道壳详解

Starlink三个外壳在不同设计仰角下与各自最大距离相关的单向时间延迟

Starlink天基卫星星座轨道壳详解

Starlink三个外壳设计的 ( DHPW ) 的垂直平行距离 ( L DPHW ) 与基于等式的理想水平面 ( IHPW ) 相关

Starlink天基卫星星座轨道壳详解

Starlink三个外壳的覆盖计算的第一步计算不同高度的天底角和中心角

Starlink天基卫星星座轨道壳详解

Starlink三个外壳的覆盖卫星的覆盖范围

Starlink天基卫星星座轨道壳详解

Starlink三个外壳的以成对的方位角和仰角

Starlink天基卫星星座轨道壳详解

Starlink天基卫星星座轨道壳详解

https://www.frontiersin.org/articles/10.3389/frcmn.2021.643095/full

References

Botta, A., and Pescape, A. (2013). New generation satellite broadband Internet service: should ADSL and 3G worry. Italy: Turin. TMA 2013, co-lacted with IEEE INFOCOM 2013, April 2013.

CrossRef Full Text

Cakaj, S., Kamo, B., Kolici, V., and Shurdhi, O. (2011). The Range and Horizon Plane Simulation for Ground Stations Of Low Earth Orbiting (LEO) Satellites. Ijcns 04 (09), 585–589. doi:10.4236/ijcns.2011.49070

CrossRef Full Text | Google Scholar

Cakaj, S., Fischer, M., and Schotlz, L. A. (2009). Sun synchronization of low earth orbits (LEO) through inclination angle. Proceedings: 28th IASTED International Conference on Modelling, Identification and Control, MIC. Austria: Innsbruck, 155–161.

Google Scholar

Cakaj, S., Fitzmaurice, M., Reich, J., and Foster, E. (2010a). Simulation of local user terminal implementation for low earth orbiting (LEO) search and rescue satellites. Proceedings: The Second International Conference on Advances in Satellite and Space Communications SPACOMM 2010, IARIA. Athens, Greece: IEEE, 140–145.

Google Scholar

Cakaj, S., Fitzmaurice, M., Reich, J., and Foster, E. (2010b). The downlink adjacent interference for low earth orbiting (LEO) search and rescue satellites. Ijcns 03 (2), 107–115. doi:10.4236/ijcns.2010.32016

CrossRef Full Text | Google Scholar

Cakaj, S., Kamo, B., Lala, A., Agastra, E., and Shinko, I. (2015). The velocity increment for Hohmann coplanar transfer from different low earth orbits. Fae 4 (1), 35–41. doi:10.12783/fae.2015.0401.04

CrossRef Full Text | Google Scholar

Cakaj, S., Keim, W., and Malaric, K. (2005). Sun noise measurement at low earth orbiting satellite ground station. Proceedings: 47th International Symposium ELMAR 2005 focused on Multimedia Systems and Applications. Zadar, Croatia: IEEE, 345–348.

Google Scholar

Cakaj, S., Kamo, B., Lala, A., and Rakipi, A. (2014). The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation. Int. J. Adv. Comp. Sci. Appl. 5 (6), 6–10. doi:10.14569/ijacsa.2014.050602

CrossRef Full Text | Google Scholar

Cakaj, S. (2010). Local user terminals for search and rescue satellites. Saarbrucken, Germany: VDM Publishing House.

CrossRef Full Text

Cakaj, S., and Malarić, K. (2007). Rigorous analysis on performance of LEO satellite ground station in urban environment. Int. J. Satell. Commun. Netw. 25 (6), 619–643. doi:10.1002/sat.895

CrossRef Full Text | Google Scholar

Cakaj, S. (2009). Practical Horizon Plane and Communication Duration for Low Earth Orbiting (LEO) Satellite Ground Stations.. WSEAS J. Trans. Commun. 8 (4), 373–383. ISSN:1109-2742, doi:10.5555/1558727.1558728

Google Scholar

Cochetti, R. (2015). “Low earth orbit (LEO) mobile satellite communications systems,” in Mobile satellite communications handbook (Hoboken, NJ: Wiley Telecom), 119-155.

Google Scholar

De Selding, B. P. (2015). Virgin, Qualcomm Invest in OneWeb Satellite Internet Venture. Paris: SpaceNews.

Foust, J. (2018). Data From: Telesat to Announce Manufacturing Plans for LEO Constellation in Coming Months. Toronto: SpaceNews. Available at https://spacenews.com/telesat-toannounce-manufacturing-plans-for-leo-constellation-in-coming-months. (Accessed January 17, 2021).

Garner, P., Cooke, D., and Haslehurst, A. (2009). Development of a scalable Payload Downlink chain for highly agile earth observation missions in Low Earth Orbit. Proceedings: 4th International Conference Recent Advances in Space Technologies. 529‐534. Turkey: Istanbul.

Google Scholar

Geospatial World (2021). Data from: how many satellites orbit Earth? https://www.geospatialworld.net/blogs/how-many-satellites-orbit-earth-and-why-space-traffic-management-is-crucial/ (Accessed January 17, 2021).

Google Scholar

Gojal, R., Kota, S., Jain, R., Fahmy, S., Vandalore, B., and Kallaus, J. (1998). Analysis and Simulation of Delay and Buffer Requirements of Satellite-ATM Networks for TCP/IP Traffic. J. Selected Areas Commun., 1–24. arXiv:cs/9809052.

Google Scholar

List of spacecrafts deployed from the International Space Station (2020). https://en.wikipedia.org/wiki/List_of_spacecraft_deployed_from_the_International_Space_Station (Accessed December 25, 2020).

Lutz, E., Werner, M., Jahn, A. (2012). Satellite Systems for Personal and Broadband Communications. Berlin, Germany: Springer-Verlag.

Oberright, E. J. (2004). Satellite Artificial World Book Online Reference Center. Chicago: World Book, Inc.

Papapetrou, P., Karapantazis, S., and Pavlidou, N. F. (2003). Handover policies in LEO systems with satellite diversity. Proceedings: International Conference on Advanced Satellite Mobile Systems (ASMS 2003). Frascati, Italy.

Google Scholar

Pultarova, T., and Henry, C. (2017). OneWeb Weighing 2,000 more Satellites. Washington D.C.: SpaceNews.

Reddit (2020). https://www.reddit.com/user/mscout206/ (Accessed November 15, 2020).

Richharia, M. (1999). Satellite communication systems. New York: McGraw-Hill.

Seyedi, Y., and Safavi, M. S. (2012). On the analysis of random coverage time in mobile LEO satellite communications. Commun. Lett. IEEE 16 (5). doi:10.1109/lcomm.2012.031912.112323

CrossRef Full Text | Google Scholar

Sheetz, M. (2019). Data from: Investing in Space: Amazon Wants to Launch Thousands of Satellites So It Can Offer Broadband Internet From Space. Washington D.C.: CNBC. https://www.cnbc.com/2019/04/04/amazon-project-kuiper-broadbandinternet-small-satellite-network.html [Accessed January 17, 2021).].

Starlink (2020). https://en.wikipedia.org/wiki/Starlink#Global_broadband_Internet (Accessed January 17, 2021).

Starlink Satellite Missions (2020). https://directory.eoportal.org/web/eoportal/satellite-missions/s/starlink (Accessed January 17, 2021).

Van Allen radiation belt (2020). https://en.wikipedia.org/wiki/Van_Allen_radiation_belt (Accessed December 15, 2020).

Yang, X. (2018). Low Earth orbit (LEO) Mega constellations – satellite and terrestrial integrated communication networks. Surrey GU2 7XH, UK: Institute for Communication Systems Faculty of Engineering and Physical Sciences University of Surrey Guildford, 196. [dissertation thesis].

Zee, R. E., and Stibrany, P. (2002). Canada’s first microsatellite – an enabling low-cost Technology for future space science and Technology missions. Can. Aeronaut. Space J. 48 (1), 1–11. doi:10.5589/q02-008

CrossRef Full Text | Google Scholar

Zong, P., and Kohani, S. (2019). Optimal satellite LEO constellation design based on global coverage in one revisit. Int. J. Aerospace Eng., doi:10.1155/2019/4373749

Google Scholar

原文始发于微信公众号(太空安全):Starlink天基卫星星座轨道壳详解

版权声明:admin 发表于 2023年4月24日 上午12:05。
转载请注明:Starlink天基卫星星座轨道壳详解 | CTF导航

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...